1er BAC Sciences Expérimentales BIOF Correction: devoir surveiller n°3 sur les leçons suivantes: CALCUL TRIGONOMETRIQUE et LES SUITES NUMERIQUES Durée : 2 heures Exercice1: (3pts)(1,5pt+1,5pt)Soit $x \in \mathbb{R}$ on pose : $A(x) = \sin^4 x + \cos^4 x + \frac{1}{2} \sin^2 (2x)$ Montrer que : A(x) est un réel constant 2) Résoudre dans $]-\pi,\pi[$ l'équation : $\sin^4 x + \cos^4 x = \frac{1}{2}$ **Solution:** 1) $A(x) = \sin^4 x + \cos^4 x + \frac{1}{2}\sin^2(2x) = \sin^4 x + \cos^4 x + \frac{1}{2}(2\sin x \cos x)^2$ $A(x) = \sin^4 x + \cos^4 x + 2\sin^2 x \times \cos^2 x = (\sin^2 x)^2 + 2\sin^2 x \times \cos^2 x + (\cos^2 x)^2$ Donc: $A(x) = (\sin^2 x + \cos^2 x)^2 = (1)^2 = 1$ Donc: A(x) est un réel constant 2) Résolvons dans $]-\pi,\pi[$ l'équation : $\sin^4 x + \cos^4 x = \frac{1}{2}$ $\sin^4 x + \cos^4 x = \frac{1}{2} \iff \sin^4 x + \cos^4 x + \frac{1}{2} \sin(2x) = \frac{1}{2} + \frac{1}{2} \sin(2x) \iff A(x) = \frac{1}{2} + \frac{1}{2} \sin(2x)$ Puisque : A(x)=1Donc: $\sin^4 x + \cos^4 x = \frac{1}{2} \Leftrightarrow 1 = \frac{1}{2} + \frac{1}{2} \sin(2x) \Leftrightarrow \sin(2x) = 1 \Leftrightarrow 2x = \frac{\pi}{2} + 2k\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi \quad k \in \mathbb{Z}$ $S_{\mathbb{R}} = \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\}$ Dans]- π , π [on a: $-\pi < \frac{\pi}{4} + k\pi < \pi \Leftrightarrow -\frac{5\pi}{4} < k\pi < \frac{3\pi}{4} \Leftrightarrow -\frac{5}{4} < k < \frac{3}{4}$ avec $k \in \mathbb{Z}$ Donc: k = -1 ou k = 0Donc: $x = \frac{\pi}{4} ou \ x = \frac{-3\pi}{4}$ Donc: $S_{]-\pi,\pi[} = \left\{-\frac{3\pi}{4}; \frac{\pi}{4}\right\}$ Exercice2: (4,5pts): (1pt+1pt+1pt+0,5pt+1pt)Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_{n+1} = \frac{5u_n - 1}{u_n + 3} & \forall n \in \mathbb{N} \end{cases}$ Et Soit la suite récurrente $(v_n)_{n\in\mathbb{N}}$ définie par $:v_n=\frac{1}{u-1} \quad \forall n\in\mathbb{N}$ http://www.xriadiat.com/ PROF: ATMANI NAJIB 1 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF Calculer: u₁; v₀ 2) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est arithmétique de raison $r=\frac{1}{4}$ b) Ecrire v, en fonction de n c) En déduire u_n en fonction de n d) Calculer la somme suivante : $s_n = v_0 + v_1 + ... + v_{32}$ **Solution**: 1) On a: $u_{n+1} = \frac{5u_n - 1}{u_n + 3} \quad \forall n \in \mathbb{N}$ Pour n=0 on : $u_{0+1} = \frac{5u_0 - 1}{u_0 + 3}$ donc : $u_1 = \frac{5 \times 2 - 1}{2 + 3} = \frac{9}{5}$ Et on a : $v_n = \frac{1}{u-1} \quad \forall n \in \mathbb{N}$ Donc: pour n=0 on: $v_0 = \frac{1}{u_1 - 1} = \frac{1}{2 - 1} = \frac{1}{1} = 1$ 2) $v_{n+1} - v_n = \frac{1}{u_{n+1} - 1} - \frac{1}{u_n - 1} = \frac{1}{\frac{5u_n - 1}{u_n + 3} - 1} - \frac{1}{u_n - 1} = \frac{1}{\frac{5u_n - 1 - u_n - 3}{u_n + 3}} - \frac{1}{u_n - 1} = \frac{1}{\frac{4u_n - 4}{u_n + 3}} - \frac{1}{u_n - 1}$ $v_{n+1} - v_n = \frac{u_n + 3}{4u_n - 4} - \frac{1}{u_n - 1} = \frac{u_n + 3}{4u_n - 4} - \frac{4}{4u_n - 4} = \frac{u_n + 3}{4u_n - 4} - \frac{1}{u_n - 1} = \frac{u_n + 3 - 4}{4u_n - 4} = \frac{u_n - 1}{4(u_n - 1)} = \frac{1}{4(u_n - 1)$ Donc $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison $r=\frac{1}{4}$ et de premier terme $v_0=1$ a) Ecriture de v, en fonction de n: On a $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison $r=\frac{1}{4}$ et de premier terme $v_0=1$ Donc: $v_n = v_0 + nr = 1 + n \times \frac{1}{4} = 1 + \frac{n}{4} = \frac{n+4}{4}$ b) Puisque : $v_n = \frac{1}{u_n - 1}$ donc $u_n - 1 = \frac{1}{v_n}$ c'est-à-dire : $u_n = \frac{1}{v_n} + 1$ Donc: $u_n = \frac{1}{n+4} + 1 = \frac{4}{n+4} + 1 = \frac{4+n+4}{n+4} = \frac{n+8}{n+4}$ d) On a : $(v_n)_{n \in \mathbb{N}}$ est une suite arithmétique donc : $s_n = v_0 + v_1 + ... + v_{32} = (32 - 0 + 1) \frac{v_0 + v_{32}}{2}$ $s_n = 33 \frac{1+v_{32}}{2}$ et on a : $v_n = \frac{n+4}{4}$ donc : $v_{32} = \frac{32+4}{4} = 9$ Donc: $s_n = 33 \frac{1+9}{2} = 33 \times 5 = 165$ PROF: ATMANI NAJIB http://www.xriadiat.com/ 2 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF **Exercice3**: (5pts): (1,5pt+1pt+1pt+1pt+0,5pt)Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_{n+2} = \frac{1}{3} (4u_{n+1} - u_n) \forall n \in \mathbb{N}$ $u_0 = 2$; $u_1 = 3$ Et on considère la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par : $v_n = u_n - u_{n-1}$; $\forall n \in \mathbb{N}^*$ 1) Calculer: u_2 ; u_3 ; v_1 et v_2 2) Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont en déterminera la raison et le premier terme 3) Ecrire v_n en fonction de n 4) Calculer la somme : $s_n = \sum_{k=1}^{n-1} v_k = v_1 + v_2 + ... + v_n$ en fonction de n 5) En déduire : u_n en fonction de n **Solution :1)** On a : $u_{n+2} = \frac{1}{2} (4u_{n+1} - u_n)$; $\forall n \in \mathbb{N}$ Pour n=0: $u_{0+2} = \frac{1}{2} (4u_{0+1} - u_0) \Rightarrow u_2 = \frac{1}{2} (4u_1 - u_0) \Rightarrow u_2 = \frac{10}{2}$ Pour n=1: $u_{1+2} = \frac{1}{3}(4u_{1+1} - u_1) \Rightarrow u_3 = \frac{1}{3}(4u_2 - u_1) \Rightarrow u_3 = \frac{31}{9}$ On a: $v_n = u_n - u_{n-1}$; $\forall n \in \mathbb{N}^*$ Pour n=1: $v_1 = u_1 - u_0 \Rightarrow v_1 = 3 - 2 \Rightarrow v_1 = 1$ Pour n=2: $v_2 = u_2 - u_1 \Rightarrow v_2 = \frac{10}{3} - 3 \Rightarrow v_2 = \frac{1}{3}$ 2) Montrons que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique On a: $v_{n+1} = u_{n+1} - u_n$ donc: $v_{n+1} = \frac{1}{3}(4u_n - u_{n-1}) - u_n = \frac{1}{3}(4u_n - u_{n-1} - 3u_n) = \frac{1}{3}(u_{n+1} - u_{n-1}) = \left|\frac{1}{3}v_n\right|$ Donc: $v_{n+1} = \frac{1}{3}v_n$ par suite $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison: $q = \frac{1}{3}$ et de premier terme : $v_1 = 1$ Ecrivons v_n en fonction de n On a : $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\frac{1}{3}$ et de premier terme $v_1=1$ Donc: $v_n = v_1 \times q^{n-1} \Leftrightarrow \left| v_n = \left(\frac{1}{3} \right)^{n-1} \right| ; \forall n \in \mathbb{N}^*$ 4) Calculons la somme : $s_n = \sum_{k=1}^{n-1} v_k = v_1 + v_2 + ... + v_n$ en fonction de n http://www.xriadiat.com/ PROF: ATMANI NAJIB 3 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF Soit: $n \in \mathbb{N}^{\bullet}$; $s_n = \sum_{k=1}^{k=n} v_k = v_1 + v_2 + ... + v_n = v_1 \frac{1 - \left(\frac{1}{3}\right)}{1 - \frac{1}{n}} = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^n\right)$; $\forall n \in \mathbb{N}^{\bullet}$ 5) Déduisons : u_n en fonction de n On a: $s_n = v_1 + v_2 + ... + v_{n-1} + v_n = (y_1 - y_0) + (y_2 - y_1) + ... + (y_{n-1} - y_{n-2}) + (y_n - y_{n-1})$ Donc: $S_n = u_n - u_0$ Donc: $u_n = s_n + u_0$ c'est-à-dire: $u_n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 2 = \left| \frac{7}{2} - \frac{3}{2} \left(\frac{1}{3} \right)^n \right| : \forall n \in \mathbb{N}$ Exercice4: (3,5pts): (1pt+1,5pt+1pt)

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

http://www.xriadiat.com

DS3: J

PROF: ATMANI NAJIB

On considère la suite (u_n) définie par : $u_0 \in \mathbb{R}$ et : $u_{n+1} = \left(1 - \frac{u_n}{2}\right)u_n$; $\forall n \in \mathbb{N}$ 1) Déterminer u_0 pour que : la suite (u_n) soit constante 2) On suppose que : $0 \prec u_0 \prec 1$ a) Montrer que : $\forall n \in \mathbb{N}$ $0 \le u_n \le 1$ b) Etudier la monotonie de la suite (u_n) **Solution :** 1) Déterminons u_0 pour que : la suite (u_n) soit constante (u_n) Constante signifie que : $u_{n+1} = u_n \ \forall n \in \mathbb{N}$ $\Leftrightarrow u_n = u_0 \ \forall n \in \mathbb{N} \Leftrightarrow u_1 = u_0$ $\Leftrightarrow \left(1 - \frac{u_0}{2}\right)u_0 = u_0 \Leftrightarrow \left(1 - \frac{u_0}{2}\right)u_0 - u_0 = 0 \Leftrightarrow u_0\left(1 - \frac{u_0}{2} - 1\right) = 0 \Leftrightarrow -\frac{u_0}{2} \times u_0 = 0 \Leftrightarrow u_0 = 0$ Donc : la suite (u_n) soit constante si et seulement si : $u_0 = 0$ 2) On suppose que : $0 \prec u_0 \prec 1$ a) Montrer par récurrence que : $\forall n \in \mathbb{N}$ $0 \le u_n \le 1$ 1étapes : n=0 : on a : $0 \prec u_0 \prec 1$ donc : $0 \le u_0 \le 1$ Donc la proposition est vraie pour n=0 2étapes : Supposons que : $0 \le u_n \le 1$ 3étapes : Montrons alors que : $0 \le u_{n+1} \le 1$?? On a: $0 \le u_n \le 1$ donc: $0 \le \frac{u_n}{2} \le \frac{1}{2}$ Donc: $\frac{1}{2} \le 1 - \frac{u_n}{2} \le 1$ et $0 \le u_n \le 1$ Donc: $0 \le \left(1 - \frac{u_n}{2}\right) u_n \le 1$ c'est-à-dire: $0 \le u_{n+1} \le 1$ D'après le principe de récurrence : $\forall n \in \mathbb{N}$; $0 \le u_n \le 1$ b) Etudions la monotonie de la suite (u_n) http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 4 PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF Soit: $n \in \mathbb{N}$ $u_{n+1} - u_n = \left(1 - \frac{u_n}{2}\right)u_n - u_n = -\frac{\left(u_n\right)^2}{2} \le 0$ Donc : la suite (u,)est décroissante Exercice5: (4pts): (1pt+1,5pt+1,5pt); Soit f la fonction définie sur : $I =]1; +\infty[$ par $f(x) = \frac{x^2 - 3x + 6}{x^2 - 3x + 6}$ 1) Montrer que : $\forall x \in I \ f(x) \ge 3$ 2) Soit la suite (u_n) définie par : $u_0 = 5$ et $u_{n+1} = f(u_n)$: $(\forall n \in \mathbb{N})$ a) Montrer que : $\forall n \in \mathbb{N} : u_n \ge 3$ b) Montrer que la suite (u_n) est monotone **Solution : 1)** $f(x)-3=\frac{x^2-3x+6}{x-1}-3=\frac{x^2-6x+9}{x-1}$ $f(x)-3 = \frac{(x-3)^2}{x-1} \ge 0 \quad \forall x \in I \text{ car } (x-3)^2 \ge 0 \text{ et } x-1 \ge 0 \ (x \in I)$ Donc: $\forall x \in I \ f(x) \ge 3$ 2)a) Montrons que : $\forall n \in \mathbb{N} : u_n \ge 3$? On a: u₀ = 5 ≥ 3 la ppté est vraie pour n=0 Supposons que : u_n ≥ 3 Montrons que : u_{n+1} ≥ 3 ? Comme $u_n \ge 3$ alors $u_n \ge 1$ donc $f(u_n) \ge 3$ d'après(1) donc $u_{n+1} \ge 3$ cqfd b) $u_{n+1} - u_n = \frac{u_n^2 - 3u_n + 6}{u - 1} - u_n = \frac{u_n^2 - 3u_n + 6 - u_n^2 + u_n}{u_n - 1}$ $u_{n+1} - u_n = \frac{-2u_n + 6}{u_n - 1} = \frac{2(3 - u_n)}{u_n - 1}$ et comme $u_n \ge 3$ Alors: $3-u_n \le 0$ et $u_n - 1 > 0$ Donc: $u_{n+1} - u_n \le 0$ par suite: la suite (u_n) est décroissante

Exercice5: (3pts): (0,5pt+1,5pt+1pt)**Exercice6**: (3.5pts): (1pt+1pt+0.5pt+0.5pt+0.5pt)**PROF: ATMANI NAJIB** http://www.xriadiat.com/ PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF C'est en forgeant que l'on devient forgeron: Dit un proverbe. PROF: ATMANI NAJIB C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

http://www.xriadiat.com/

5

PROF: ATMANI NAJIB