PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

http://www.xriadiat.com

DS3: G

PROF: ATMANI NAJIB

1er BAC Sciences Expérimentales BIOF

Devoir surveiller n°3 sur les leçons suivantes :

Durée : 2 heures (La correction voir thttp://www.xriadiat.com)

Exercice1: (3,5pts) (1pt+1pt+1,5pt)

On pose: $A = \sin \frac{\pi}{9} \times \sin \frac{2\pi}{9} \times \sin \frac{3\pi}{9} \times \sin \frac{4\pi}{9}$

- 1) Monter que : $\sin \frac{\pi}{9} \times \sin \frac{4\pi}{9} = \frac{1}{2} \left(\frac{1}{2} \cos \frac{5\pi}{9} \right)$
- 2) Monter que : $\cos \frac{5\pi}{9} \times \sin \frac{2\pi}{9} = \frac{1}{2} \left(\sin \frac{7\pi}{9} \frac{\sqrt{3}}{2} \right)$
- 3) En déduire que : $A = \frac{3}{16}$

Exercice2: (3pts): (1,5pt+1,5pt); Soit $x \in \left]0$; $\frac{\pi}{3}\right[$ et on pose: $F(x) = \frac{\cos x - \sqrt{3}\sin x}{\cos x \sin x}$

- 1) Montrer que : $F(x) = 4 \frac{\cos\left(\frac{\pi}{3} + x\right)}{\sin 2x}$
- 3) En déduire que : $F\left(\frac{\pi}{18}\right) = 4$

Exercice3: (2pts) (1,5pt+0,5pt)

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n = \frac{5n-3}{2n+7} \ \forall n\in\mathbb{N}$

- 1)Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$
- 2) En déduire que $(u_n)_{n\in\mathbb{N}}$ est minoré

Exercice4: (4pts): (1pt+1pt+0,5pt+0,5pt+1pt)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie par : $\begin{cases} u_{n+1} = \frac{7u_n - 25}{u_n - 3} \\ u_0 = 2 \end{cases}$; $\forall n \in \mathbb{N}$

- 1) Montrer que : $u_n \neq 5$; $\forall n \in \mathbb{N}$
- 2) On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par $: v_n = \frac{1}{u-5} \ \forall n \in \mathbb{N}$

Montrer que : $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique et déterminer sa raison r et son premier terme

- 3) Ecrire v_n en fonction de n
- 4) En déduire u_n en fonction de n
- 5) On pose : $S_n = v_0 + v_1 + ... + v_{n-1}$; Calculer : S_n en fonction de n

http://www.xriadiat.com/

1

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

Exercice5: (5,5pts) (1,5pt+1pt+1,5pt+1,5pt) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par :

 $\forall n \in \mathbb{N} \quad u_{n+1} = \frac{1}{2}u_n + \frac{n}{2(n+1)(n+2)} \text{ et } u_0 = 2 ; \quad v_n = \frac{1}{2}u_n - \frac{1}{2(n+1)}$

- 1)a) Montrer que : $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont en déterminera la raison et le premier terme
- b) Ecrire u_n en fonction de n
- 2) a) Montrer que : $2^n \succ n$; $\forall n \in \mathbb{N}^*$
- b) Déduire que : $\left(\frac{1}{2}\right)^n \prec u_n \prec \frac{2}{n}$; $\forall n \in \mathbb{N}^*$

Exercice6: (2pts); Soit les suites numériques : (x_n) et (u_n) et (v_n) définies par

$$x_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^2}$$
 et $u_n = x_{2n}$ et $v_n = x_{2n+1} \ \forall n \in \mathbb{N}^*$

Etudier la monotonie des suite (u_n) et (v_n)

PROF: ATMANI NAJIB C'est en forgeant que l'on devient forgeron: Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

