PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

http://www.xriadiat.com

DS3: F

PROF: ATMANI NAJIB

1er BAC Sciences Expérimentales BIOF

Devoir surveiller n°3 sur les lecons suivantes : CALCUL TRIGONOMETRIQUE et LES SUITES NUMERIQUES

Durée: 2 heures (La correction voir http://www.xriadiat.com)

Exercice1: (3pts): (1,5pt+1,5pt)

Montrer que : 1) $1-\cos x + \sin x = 2\sin\frac{x}{2}\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)$

2) si $\alpha \in \mathbb{R}$ et $\sin \alpha \neq -1$ alors : $\frac{1-\sin \alpha}{1+\sin \alpha} = \tan^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$

Exercice2: (3pts): (1,5pt+1,5pt) Calculer: 1) $\cos \frac{7\pi}{12} \times \cos \frac{5\pi}{12}$ 2) $\sin \frac{7\pi}{12} \times \cos \frac{5\pi}{12}$

Exercice3: (1,5pt) Linéariser: $2\cos^2 x \times \sin 2x$

Exercice4: (1,5pts): Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}$: $u_n=3n^2+6n-4$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée

Exercice5: (3pts): (2pt+1pt) Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{1+u_n}{1-u} \end{cases}; \forall n \in \mathbb{N}$

1) Montrer que la suite $(u_n)_{n=1}$ est périodique de période : T=4

Calculer: u₂₀₂₄ ; u₂₀₂₅

Exercice6: (8pts): (1,5pt+1,5pt+1pt+1pt+1,5pt+1,5pt)

 $u_{n+1} = \frac{1}{2}u_n - 2$ Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par : $\begin{cases} v_{n+1} = v_n - \frac{1}{2}u_n & \forall n\in\mathbb{N} \\ u_0 = -3 \; ; \; v_0 = 0 \end{cases}$

1) Calculer: u_1 ; v_1 u_2 ; et v_2

2) Montrer que : $u_n \ge -4$: $\forall n \in \mathbb{N}$ et que $(u_n)_{n \in \mathbb{N}}$ est décroissante

3) On pose : $a_n = u_n + 4$ et $b_n = v_n - u_n$; $\forall n \in \mathbb{N}$

a) Montrer que : $(a_n)_{n\in\mathbb{N}}$ est une suite géométrique dont en déterminera la raison et le premier terme et écrire a, en fonction de n

b) Montrer que : $(b_n)_{n\in\mathbb{N}}$ est une suite arithmétique dont en déterminera la raison et le premier terme et écrire b_n en fonction de n

PROF: ATMANI NAJIB

1

c) En déduire : u_n et v_n en fonction de n

d) Montrer que : $v_n \succ n$; $\forall n \in \mathbb{N}^*$ C'est en forgeant que l'on devient forgeron : Dit un proverbe