PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF **DS3:** B http://www.xriadiat.com PROF: ATMANI NAJIB 1er BAC Sciences Expérimentales BIOF Correction: Devoir surveiller n°3 sur les leçons suivantes: CALCUL TRIGONOMETRIQUE et LES SUITES NUMERIQUES Durée : 2 heures **Exercice1**: (6,5pts): (1,5pt+1,5pt+1,5pt+2pt)Soit $x \in \mathbb{R}$ on pose : $a = \cos x + \cos 3x$ et $b = \sin x + \sin 3x$ 1) Montrer que : $\forall x \in \mathbb{R} : a^2 + b^2 = 4\cos^2(2x)$ 2) a) Montrer que : $\forall x \in \mathbb{R}$: $a = 2\cos x \times \cos 2x$ et $b = -2\sin 2x \times \cos x$ b) Montrer que : $\forall x \in \mathbb{R} : a+b=2\sqrt{2}\cos x \times \cos\left(2x-\frac{\pi}{4}\right)$ 3) Résoudre dans $[0,\pi]$ l'équation : $\cos x + \sin x + \cos 3x + \sin 3x = 0$ 4) Résoudre dans $[0,\pi]$ l'inéquation : $\cos x + \sin x + \cos 3x + \sin 3x < 0$ **Solution**: 1) a) \rightarrow Montrons que : $\forall x \in \mathbb{R}$: $a^2 + b^2 = 4\cos^2(2x)$ Soit $x \in \mathbb{R}$: On a: $a = \cos x + \cos 3x$ et $b = \sin x + \sin 3x$ Donc: $a^2 = (\cos x + \cos 3x)^2 = \cos^2 x + \cos^2 3x + 2\cos x \times \cos 3x$ Donc: $b^2 = (\sin x + \sin 3x)^2 = \sin^2 x + \sin^2 3x + 2\sin x \times \sin 3x$ Par suite : $a^2 + b^2 = 1 + 1 + 2\sin x \times \sin 3x + 2\cos x \times \cos 3x$ Donc: $a^2 + b^2 = 2 + 2(\cos x \times \cos 3x + \sin x \times \sin 3x) = 2 + 2\cos(x + 3x) = 2 + 2\cos(4x)$

Donc: $a^2 + b^2 = 2 + 2\cos(2(2x)) = 2 + 2(2\cos^2(2x) - 1) = 4\cos^2(2x)$ Par suite: $\forall x \in \mathbb{R}$: $a^2 + b^2 = 4\cos^2(2x)$ 2) a) Montrons que : $\forall x \in \mathbb{R}$: $a = 2\cos x \times \cos 2x$ et $b = -2\sin 2x \times \cos x$

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

 $\Leftrightarrow x = \frac{\pi}{2} + k\pi$ ou $2x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{2} + k\pi$ ou $x = \frac{3\pi}{8} + \frac{k\pi}{2}$; $k \in \mathbb{Z}$

 $0 \le \frac{3\pi}{8} + \frac{k\pi}{2} \le \pi \Leftrightarrow -\frac{3\pi}{8} \le \frac{k\pi}{2} \le \frac{5\pi}{8} \Leftrightarrow -\frac{3}{4} \le k \le \frac{5}{4} \Rightarrow k = 0 \text{ ou } k = 1 \Rightarrow \left| x = \frac{3\pi}{8} \right| \text{ ou } \left| x = \frac{7\pi}{8} \right|$

 $\cos x + \sin x + \cos 3x + \sin 3x < 0 \Leftrightarrow a + b < 0 \Leftrightarrow 2\sqrt{2}\cos x \times \cos\left(2x - \frac{\pi}{4}\right) \Leftrightarrow \cos x \times \cos\left(2x - \frac{\pi}{4}\right)$

4) Résolvons dans $[0;\pi]$ l'inéquation : $\cos x + \sin x + \cos 3x + \sin 3x < 0$

 $\begin{cases} \cos\left(2x - \frac{\pi}{4}\right) > 0 \\ x \in [0; \pi] \end{cases} \Leftrightarrow x - \frac{\pi}{3} = X : \begin{cases} \cos(X) > 0 \\ X \in \left[-\frac{\pi}{4}; \frac{7\pi}{4} \right] \end{cases} \Leftrightarrow X \in \left[-\frac{\pi}{4}; \frac{\pi}{4} \right[\cup \left[\frac{3\pi}{4}; \frac{7\pi}{4} \right] \right]$

 $\left\{\cos\left(2x - \frac{\pi}{4}\right) > 0 \Leftrightarrow X + \frac{\pi}{4} \in \left[0, \frac{3\pi}{4}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right] \Leftrightarrow 2x \in \left[0, \frac{3\pi}{4}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right] \Leftrightarrow x \in \left[0, \frac{3\pi}{8}\right] \cup \left[\frac{7\pi}{8}, \pi\right] \right\}$

Exercice2: (3pts): (1,5pt+1,5pt): Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_{n+1} = \frac{7u_n}{2u_n+1} & \forall n\in\mathbb{N} \end{cases}$

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique et déterminer sa raison et son premier terme

Donc : la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison : $\frac{1}{3} = q$ et son premier terme : $v_0 = 2 - \frac{3}{n} = -4$

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

 $(v_n)_{n\in\mathbb{N}}$ est géométrique donc : $S_n = (le \ premier terme \ dans \ la \ somme) \frac{1-raison^{(le \ nombre \ de \ termes)}}{1}$

PROF: ATMANI NAJIB

Puisque : $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison : $\frac{1}{3} = q$ et son premier terme : $v_0 = -4$ alors :

2

b) Montrons que : $\forall x \in \mathbb{R} : a+b=2\sqrt{2}\cos x \times \cos\left(2x-\frac{\pi}{4}\right)$

 $a+b=2\cos x\cos(2x)+2\sin(2x)\cos x=2\cos x(\cos(2x)+\sin(2x))$ $a+b=2\sqrt{2}\cos x\left(\frac{\sqrt{2}}{2}\cos(2x)+\frac{\sqrt{2}}{2}\sin(2x)\right)=2\sqrt{2}\cos x\left(\cos\frac{\pi}{4}\cos(2x)+\sin\frac{\pi}{4}\sin(2x)\right)=2\sqrt{2}\cos x\times\cos\left(2x-\frac{\pi}{4}\right)$ 3) Résolvons dans $[0;\pi]$ l'équation : $\cos x + \sin x + \cos 3x + \sin 3x = 0$

http://www.xriadiat.com/

 $\Leftrightarrow \cos x = 0$ ou $\cos \left(2x - \frac{\pi}{4} \right) = 0$

Donc: $S_{[0,\pi]} = \left\{ \frac{3\pi}{8}; \frac{\pi}{2}; \frac{7\pi}{8} \right\}$

 $\begin{cases} \cos x > 0 \\ x \in [0, \pi] \end{cases} \Leftrightarrow x \in \left[0, \frac{\pi}{2}\right]$

 $x \in [0,\pi]$

Tableau de signe :

Donc: $S = \left| \frac{7\pi}{8}; \frac{\pi}{2} \right| \cup \left| \frac{7\pi}{8}; \pi \right|$

http://www.xriadiat.com/

Supposons que: $0 \le u_n \le 3$

1étapes : n=0 on a : $0 \le u_0 \le 3 \text{ car } 0 < 1 < 3$ Donc la proposition est vraie pour n=0 2étapes : Hypothèse de récurrence :

3étapes : Montrons alors que : $0 \le u_{n+1} \le 3$??

 $u_{n+1} - 3 = \frac{u_n - 3}{2u_n + 1}$ et puisque on a : $0 \le u_n \le 3$

Donc: $u_{n+1} - 3 \le 0$ c'est-à-dire: $u_{n+1} \le 3(2)$

Donc : $(u_n)_{n\in\mathbb{N}}$ est minorée par 1 et majorée par 3.

Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n}{u_n - 1} \end{cases} \forall n \in \mathbb{N}$

2) Déterminer u_{n+2} en fonction de u_n et que peut-on déduire ?

Solution :1) Pour n=0 on a: $u_{0+1} = \frac{u_0}{u_0 - 1} = \frac{3}{3 - 1} \Rightarrow \boxed{u_1 = \frac{3}{2}}$

2) Soit: $n \in \mathbb{N}$: $u_{n+2} = \frac{u_{n+1}}{u_{n+1} - 1} = \frac{\frac{u_n}{u_n - 1}}{\frac{u_n}{u_n - 1} - 1} = \frac{u_n}{u_n - u_n + 1} = u_n$

Donc : la suite $(u_n)_{n\in\mathbb{N}}$ est périodique de période : T=2

Exercice4: (7,5pts): (1pt+1pt+1,5pt+1,5pt+1pt+1,5pt)

3) Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par : $v_n = 2 - \frac{3}{n} \quad \forall n \in \mathbb{N}$

d) Etudier la monotonie de la suite $(v_n)_{n\in\mathbb{N}}$

 $u_{0+1} = \frac{9u_0}{4u_0 + 3} \Rightarrow u_1 = \frac{9}{10}$ et $u_{1+1} = \frac{9u_1}{4u_0 + 3} \Rightarrow u_1 = \frac{27}{22}$

2) Montrons par récurrence que : $u_n \neq 0 \quad \forall n \in \mathbb{N}$

On a: $u_n \neq 0$ donc: $\frac{9u_n}{4u_n + 3} \neq 0$ donc $u_{n+1} \neq 0$

3)a) Montrons que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique

On a: $v_n = 2 - \frac{3}{u_n}$ $\forall n \in \mathbb{N}$ donc: $\frac{3}{u_n} = 2 - v_n \Leftrightarrow u_n = \frac{3}{2 - v_n}$

c) Calculons : $S_n = v_1 + v_2 + ... + v_n$ en fonction de n

2) a) Etude de la monotonie de la suite $(v_n)_{n\in\mathbb{N}}$

Donc: $(v_n)_{n\in\mathbb{N}}$ est strictement croissante

PROF: ATMANI NAJIB

http://www.xriadiat.com/

 $v_{n+1} - v_n = qv_n - v_n = v_n (q-1) = -4 \left(\frac{1}{3}\right)^n \left(\frac{1}{3} - 1\right) = \frac{8}{3} \left(\frac{1}{3}\right)^n > 0$

Soit: $n \in \mathbb{N}$; $v_{n+1} = 2 - \frac{3}{u_{n+1}} = 2 - 3 \times \frac{4u_n + 3}{9u_n} = 2 - \frac{4u_n + 3}{3u_n} = \frac{1}{3} \left(2 - \frac{3}{u_n}\right)$

Solution: 1) Calculons: u_1 et u_2

Supposons: $u_n \neq 0$

Montrons que : $u_{n+1} \neq 0$?

Donc: $u_n \neq 0 \quad \forall n \in \mathbb{N}$

Donc: $v_{n+1} = \frac{1}{2}v_n$

 $v_n = -4\left(\frac{1}{3}\right)^n$

b) Déterminons v_n en fonction de n :

Déterminons u_n en fonction de n :

http://www.xriadiat.com/

Par suite : $u_n = \frac{3}{2+4\left(\frac{1}{2}\right)^n}$

le nombre de termes = n - 1 + 1 = n

Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_{n+1} = \frac{9u_n}{4u_n + 3} \\ u_n = \frac{1}{4u_n + 3} \end{cases} \forall n \in \mathbb{N}$

b) Déterminer v_n en fonction de n et en déduire u_n en fonction de n

c) On pose : $S_n = v_1 + v_2 + ... + v_n$; Calculer : S_n en fonction de n

Pour n=0 on a $u_0 = \frac{1}{2} \neq 0$ donc la proposition vraie pour n=0

Pour n=1 on a: $u_{1+1} = \frac{u_1}{u_1 - 1} = \frac{\frac{3}{2}}{\frac{3}{2} - 1} \Rightarrow \boxed{u_2 = 3}$

De (1) et (2) en déduit que : $0 \le u_{n+1} \le 3$

On a: $0 \le u_n$ donc $0 \le 2u_n + 1$ et $0 \le 7u_n$

On a donc: $u_n - 3 \le 0$ et $0 \le 2u_n + 1$

Exercice3: (3pts): (1pt + 2pt):

D'où $\forall n \in \mathbb{N} : 0 \le u_n \le 3$

1) Calculer: u_1 ; u_2

Donc: $\forall n \in \mathbb{N} \ u_{n+2} = u_n$

http://www.xriadiat.com/

1) Calculer: u, et u,

Montrer que u_n ≠ 0 ∀n ∈ N

Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée par 1 et majorée par 3.

Solutions: Montrons par récurrence que : $\forall n \in \mathbb{N}$: $0 \le u_n \le 3$

Donc $0 \le u_{n+1}$ (1) et on a : $u_{n+1} - 3 = \frac{7u_n}{2u_n + 1} - 3 = \frac{7u_n - 3(2u_n + 1)}{2u_n + 1}$

 $\cos x + \sin x + \cos 3x + \sin 3x = 0 \Leftrightarrow a+b=0$

 $0 \le \frac{\pi}{2} + k\pi \le \pi \iff -0.5 \le k \le 0.5 \implies k = 0 \implies x = \frac{\pi}{2}$

 $\Leftrightarrow 2\sqrt{2}\cos x \times \cos\left(2x - \frac{\pi}{4}\right) = 0 \Leftrightarrow \cos x \times \cos\left(2x - \frac{\pi}{4}\right) = 0$

On a: $b = \sin x + \sin 3x = 2\sin\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right) = 2\sin(2x)\cos(-x) = 2\cos x\sin(2x)$

On a: $a = \cos x + \cos 3x = 2\cos\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right) = 2\cos(2x)\cos(-x) = 2\cos x\cos(2x)$

PROF: ATMANI NAJIB

1

3

4

5

PROF: ATMANI NAJIB