PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

http://www.xriadiat.com

DS1: D

PROF: ATMANI NAJIB

1er BAC Sciences Expérimentales BIOF

Correction: Devoir surveiller n°2 sur les leçons suivantes: BARYCENTRE et TD-PRODUIT SCALAIRE DANS V2

Durée : 2 heures

Exercice1: (3pts)

Soit ABC un triangle et G point tel que : $2\overline{AC} = 3\overline{AG} - \overline{GB}$

Montrer que G le barycentre de : $\{(A, 1); (B, 1); (C, 2)\}$ et construire le point G

Solution: $2\overrightarrow{AC} = 3\overrightarrow{AG} - \overrightarrow{GB} \Leftrightarrow 2\overrightarrow{AC} - 3\overrightarrow{AG} + \overrightarrow{GB} = 0$ $\Leftrightarrow 2(\overline{AG} + \overline{GC}) - 3\overline{AG} + \overline{GB} = \overline{0} \Leftrightarrow -\overline{AG} + \overline{GB} + 2\overline{GC} = \overline{0} \Leftrightarrow -\overline{AG} + \overline{GB} + 2\overline{GC} = \overline{0} \Leftrightarrow \overline{GA} + \overline{GB} + 2\overline{GC} = \overline{0}$

Donc G le barycentre de : $\{(A, 1); (B, 1); (C, 2)\}$

On a : \mathbb{R} $\overrightarrow{AG} = \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC}$

Donc: $\overline{AG} = \frac{1}{4} \overline{AB} + \frac{2}{4} \overline{AC}$ donc: $\overline{AG} = \frac{1}{4} \overline{AB} + \frac{1}{2} \overline{AC}$

Exercice2: (5,5pts): (1pt + 2,5pt + 2pt)

A et B deux points tel que : AB = 4cm et soit : (F) l'ensemble des points M du plan tel que : $\frac{MA}{MB} = 3$

1) Montrer que : $M \in (F) \Leftrightarrow \overrightarrow{MA}^2 - 9\overrightarrow{MB}^2 = 0$

2) Soit G le barycentre des points pondérés : (A;1) ;(B;3) et K le barycentre des points pondérés (A;1); (B;-3)

a) Montrer que : $M \in (F) \Leftrightarrow \overline{MG} \cdot \overline{MK} = 0$

b) En déduire l'ensemble (F) et le tracer Solution :1) $M \in (F) \Leftrightarrow \frac{MA}{MB} = 3 \Leftrightarrow MA = 3MB$

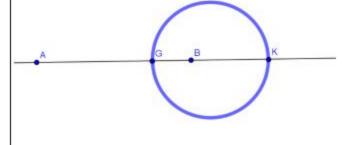
 $M \in (F) \Leftrightarrow \overrightarrow{MA}^2 - 9\overrightarrow{MB}^2 = 0$

2)a) $M \in (F) \Leftrightarrow \overline{MA}^2 - 9\overline{MB}^2 = 0 \Leftrightarrow (\overline{MA} - 3\overline{MB})(\overline{MA} + 3\overline{MB}) = 0$ et d'après La propriété caractéristique du

barycentre on aura: $\overrightarrow{MA} + 3\overrightarrow{MB} = 4\overrightarrow{MG}$ et $\overrightarrow{MA} - 3\overrightarrow{MB} = -2\overrightarrow{MK}$ Donc: $M \in (F) \Leftrightarrow \overrightarrow{MA}^2 - 9\overrightarrow{MB}^2 = 0 \Leftrightarrow -8\overrightarrow{MA} \cdot \overrightarrow{MK} = 0$

Donc: $M \in (F) \Leftrightarrow \overrightarrow{MA} \cdot \overrightarrow{MK} = 0$

b) d'après a) en déduit que (F) est le cercle de dont un diamètre est [GK]



http://www.xriadiat.com/

PROF: ATMANI NAJIB

1

Exercice3: (5,5 pts): (1,5pt+1,5pt+1pt+1,5pt)

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

Dans un repère orthonormé $\mathcal{R}(O; \vec{i}, \vec{j})$ on considère les points suivants A(3;2), B(0;5) et C(-2;-1).

1) Calculer les normes des vecteurs \overrightarrow{AB} ; \overrightarrow{AC} et \overrightarrow{BC}

2) Calculer les produits scalaires : AB•AC : BC•BA et CA•CB

3) Calculer une mesure des angles (BAC) et (ACB) à un degré près.

4) H est le projeté orthogonal de B sur (AC). Calculer AH et CH. **Solution**: 1) On a : $\overrightarrow{AB}(-3;3)$ Donc : $\overrightarrow{AB} = ||\overrightarrow{AB}|| = \sqrt{(-3)^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$

On a : $\overrightarrow{AC}(-5, -3)$ Donc : $AC = ||\overrightarrow{AC}|| = \sqrt{(-5)^2 + (-3)^2} = \sqrt{34}$

On a : $\overrightarrow{BC}(-2,-6)$ Donc : $BC = \|\overrightarrow{BC}\| = \sqrt{(-2)^2 + (-6)^2} = \sqrt{40} = 2\sqrt{10}$

2) Calculons les produits scalaires :

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = -3 \times (-5) + 3 \times (-3) = 6$

 $\overrightarrow{BC} \cdot \overrightarrow{BA} = -2 \times 3 - 6 \times (-3) = 12$

 $CA \cdot CB = 5 \times 2 + 3 \times 6 = 28$

3) On sait que : $\cos(BAC) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\|}$ et et on a : $\overrightarrow{AB}(-3;3)$ et $\overrightarrow{AC}(-5;-3)$ et $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6$

 $\cos(BAC) = \frac{6}{3\sqrt{2} \times \sqrt{34}} = \frac{1}{\sqrt{17}}$ par conséquent : $BAC = 76^{\circ}$ Aussi: $\cos(ACB) = \frac{28}{\sqrt{34} \times 2\sqrt{10}} = \frac{7}{\sqrt{85}}$ par conséquent: $ACB = 41^{\circ}$

4) On a: $AB \cdot AC = 6 \succ 0$ donc: $AB \cdot AC = AH \cdot AC = AH \times AC = 6$

Donc: $AH = \frac{6}{\sqrt{34}} \approx 1,02$ et comme $H \in [AC]$: $CH = AC - AH \approx \sqrt{32} - 1,02 = 4,63$

Exercice4: (3 pts): (1,5pt+1,5pt)Dans Le plan (\mathcal{P}) est rapporté à un repère orthonormé $\mathcal{R}(O,\vec{i},\vec{j})$

Considérons les points A(1,2); B(-2,3) et C(0,4)

Déterminer une équation cartésienne de la droite (Δ) la hauteur du triangle ABC passant par A

Déterminer une équation cartésienne de la droite (D) médiatrice du segment [AB]

Solution: 1) $\overline{AB}(a,b)$ avec (D)/ax+by+c=0 un vecteur normal a(D)AB(-3,1) Donc: (D)/-3x+y+c=0

Or $I \in (D)$ I est le milieu du segment [AB]: $I\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$ donc $I\left(\frac{-1}{2}, \frac{5}{2}\right)$

Donc: $-3\left(-\frac{1}{2}\right) + \frac{5}{2} + c = 0 \Leftrightarrow \frac{3}{2} + \frac{5}{2} + c = 0 \Leftrightarrow c = -4$

Par suite : (D)/-3x+y-4=0

http://www.xriadiat.com/

PROF: ATMANI NAJIB

2

Donc : (Δ) perpendiculaire à (BC) passant par A Donc $\overrightarrow{BC}(2,1)$ un vecteur normal a (Δ) donc : (Δ)/2x+y+c=0

PROF: ATMANI NAJIB: 1er BAC Sciences Expérimentales BIOF

On a : $A \in (\Delta)$ donc : $2 \times 1 + 2 + c = 0 \Leftrightarrow c = -4$

2)(Δ) la hauteur du triangle ABC passant par A

Donc: $(\Delta): 2x + y - 4 = 0$

Exercice5: (3 pts) Résoudre graphiquement le système: (S

Solution: $(1): x^2 + y^2 - 4x < 0 \Leftrightarrow (x-2)^2 + y^2 < 2^2$

Donc les solutions de cette inéquation c'est les couples (x, y) des points qui se trouvent à l'intérieur du cercle (\mathcal{C}) de centre $\Omega(2;0)$ et de rayon r=2

• (2): x-y-1 > 0: les solutions de cette inéquation c'est les couples (x, y) des points qui se trouvent

(Demi plan qui contient $\Omega(2,0)$ Car :2-0-1=1>0) Finalement l'ensemble des solutions du système c'est les couples (x, y)

PROF: ATMANI NAJIB C'est en forgeant que l'on devient forgeron : Dit un proverbe.

au-dessous de la droite d'équation : x - y - 1 = 0

des points qui appartiennent à la partie colorée.

C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien